重生之学神的黑科技系统第50章 七探奇点
完成了连接朗兰兹纲领与超凯勒几何的惊人之作后张诚内心激荡的波澜久久未能平复。
那种在两个看似隔绝的数学世界间架设桥梁的创造感是任何单一领域的突破都无法比拟的。
然而现实的紧迫感很快将这份激动压了下去。
系统任务的重压积分与药剂储备的告急如同达摩克利斯之剑悬于头顶。
他再次进行了短暂而高效的休整。
未名湖畔的冷风让他发热的头脑冷静下来。
与父母的通话中他刻意让自己的语气显得轻松听着母亲念叨着准备年货的琐事父亲关心北京是否下雪这些平凡的温暖是他对抗学术孤独感的良药。
他也与徐海超院士通了电话这次他提及“在思考一些关于低维拓扑基本结构的问题”徐院士在电话那头沉默了片刻语气带着前所未有的凝重和期待:“低维拓扑……那里藏着数学最深的奥秘之一也是最坚硬的堡垒。
张诚如果你在那里有所发现哪怕只是一点微光都将是了不得的成就。
放手去做但也要注意那里的水很深。
” 徐院士的话更像是一种提醒。
张诚知道在完成了跨领域的宏大构建后他需要回归某种“本源”去触碰一些数学中更为基础但也可能更为艰深的问题。
他的目光投向了低维拓扑的核心地带特别是与三维和四维流形的分类与结构相关的根本性难题。
他选择了一个看似更具体但实则牵一发而动全身的问题:深入研究某种特定类型的(在四维流形中)的(在三维流形边界上诱导的)** 的(特别是其(例如是否为L-空间)** 与(其(例如是否允许光滑的(或(是否存在)** 之间的深刻联系。
这个问题处于紧切触几何(Contact Geometry)、Heegaard Floer 同调论 和四维光滑拓扑的交叉点上是当前低维拓扑研究的前沿和热点。
简单来说他试图回答:一个三维流形的某种特定的接触结构(可以看作流形上某种“不允许逆转的扭曲”)的精细拓扑性质(如是否为L-空间)是否能够阻碍该三维流形作为边界去“包围”某个具有“好”性质(如允许某种特殊度量或不存在某个光滑不变量)的四维流形? 这是一个关于“障碍(Obstruction)”的问题探究的是低维结构本身蕴含的“刚性”如何限制其在高维的延拓可能性。
张诚的创新性在于他并未停留在已知的、基于经典不变量(如Donaldson不变量或Seiberg-Witten不变量)的障碍理论而是引入了来自(源自规范-引力对偶的模糊启发)** 的全新视角并发展了一套前所未有的(将接触结构的(通过其) 与(四维流形的(通过其) 联系起来的**。
具体而言他的核心工作包含三个层层递进的突破: 1. 构造“接触结构的范畴化不变量”: 他超越了Heegaard Floer同调论提供的(通常是向量空间或模的)不变量为每个紧切触三维流形 (Y ξ) 构造了一个全新的A∞-范畴记作 Fuk(Y ξ)。
这个范畴的灵感来源于Fukaya范畴(源自辛几何)但被张诚巧妙地改造其对象与 (Y ξ) 的勒让德子流形(Legendrian submanifolds) 的某种“渐进化版本”相关其态射复形的微分结构编码了接触结构 ξ 的全纯片(holomorphic disk) 信息。
他证明这个 Fuk(Y ξ) 范畴本身以及其Hochschild上同调(Hochschild Cohomology) 的某种特定元素(他称之为接触元(Contact Element))是 (Y ξ) 的微分同胚不变量并且其形式性质(例如该范畴是否是紧生成(pact-generated) 的或者接触元是否是可逆的)深刻反映了 (Y ξ) 是否是L-空间等精细性质。
2. 建立“范畴障碍原理”: 这是最关键的飞跃。
张诚提出了一个大胆的定理:如果 (Y ξ) 是某个光滑的、具有正数量曲率尺度的闭四维流形 X 的边界并且 ξ 与 X 上的某个特定的近复结构(almost plex structure) 相容那么其对应的范畴 Fuk(Y ξ) 必须是形式可 Calabi-Yau 化的(formally Calabi-Yau)并且其接触元必须满足一个特定的消失条件。
换句话说某些特定的范畴性质成为了四维流形存在“好”光滑结构的“障碍”。
如果 (Y ξ) 的范畴不满足这些性质那么它就不可能作为此类“好”四维流形的边界。
3. 连接物理与深度应用: 他进一步论证他构造的 Fuk(Y ξ) 范畴可以被解释为某种三维拓扑弦理论(3d Topological String Theory) 在 (Y ξ) 上的D-膜(D-brane) 范畴。
而定理中的障碍条件则对应于在四维流形 X 上定义某种共形场论(Conformal Field Theory) 时所需的异常抵消(Anomaly Cancellation) 条件。
这为他的纯数学定理提供了一个来自理论物理的、极具启发性的“解释”。
利用这套新理论他成功重新证明并大幅强化了一些已知的关于L-空间不能边界某些四维流形的结果并且发现了全新的、用传统不变量无法检测的障碍现象即存在一些 (Y ξ)其经典拓扑不变量看起来“人畜无害”但其范畴不变量 Fuk(Y ξ) 却显示出强烈的“刚性”阻止了其作为任何“好”的四维流形的边界。
这章没有结束请点击下一页继续阅读!。
本文地址重生之学神的黑科技系统第50章 七探奇点来源 http://www.81hbv.com


